How do we analyze data?

- Analyze Assessment data and prepare results
- Learn ways to interpret your data using basic statistics

1. Analyze Assessment data and prepare results

MAT 270 Statistics

Outcome 1: Descriptively analyze a set of data.

Measure 1

On Prep Work, Quizzes, and Test One, 70% of the students will be able to correctly analyze data by finding the mean, the standard deviation, the quartiles, the median, the IQR, and outliers with a score of 70% or higher.

Mean and Standard Deviation

Chapter 3 Prep Work, \#2. We are going to calculate the standard deviation for the following set of sample data. a. Calculate the mean. b. Fill in the table with the differences of each data value from the mean, then the squared differences, and then the total. c. Calculate the standard deviation using the total.

x	$x-\bar{x}$	$(x-\bar{x})^{2}$
3		
11		
11		
2		
8		

Total:

In the gradebook in MyOpenMath.com, I find the first student's work. This student received nine correct answers out of 13 possible.

We are going to calculate the standard deviation for the following set of sample data.

1) First, calculate the mean.
$\bar{x}=9.8$
2) Fill in the table below. Fill in the differences of each data value from the mean, then the squared differences and find the total.

x	$x-\bar{x}$	$(x-\bar{x})^{2}$
15	5.2	27.04
4	-5.8	-6.6 *
12	2.2 ,	4.84
11	1.2	1.44
7	-2.8 -	-6.4
	Total	20.28 *

3) Calculate the standard deviation by taking the square root of the total.

Standard deviation: $s=\sqrt{\frac{\sum(x-\bar{x})^{2}}{n-1}}=5.07$ Round to two decimal places

4	A	B	C	D
1	DATA, Ol		M1	3 P 2
2				13
3	Blanchett	Cate		9
4	Bledel	Alexis		12
5	Cabello	Camila		13
6	Cooper	Bradley		6
7	Depp	Johnny		9
8	DiCaprio	Leonardo		12
9	Freeman	Morgan		13
10	Hanks	Tom		1
11	Johansson	Scarlett		13
12	Kidman	Nicole		9
13	Lawrence	Jennifer		12
14	Longoria	Eva		7
15	Lopez	Jennifer		13
16	Pacino	Al		10
17	Penn	Sean		12
18	Portman	Natalie		11
19	Rodriguez	Gina		13
20	Swank	Hilary		9
21	Vergara	Sofia		12

I entered the grades for the students for this question into Excel.

My Benchmark: "a score of 70% or higher..." Seventy percent of a possible 13 points is 9.1 , so the first student's grade of 9 did not meet the benchmark.

	A	B	C	D	E
1	DATA, Ol		Ml	$3 P$	

I assign a 1 for a grade which equals or exceeds the benchmark of 9.1 out of 13 points, and a 0 for a grade which does not.

To find the total of the grades which met the benchmark, click in the cell below the last student's points.
Click on the $f x$ up on the top of the screen to bring up this screen. Click on SUM and OK.

	2	\times	\checkmark	f_{x}	
-	A	B	c	D	E
1	DATA, 01		M1	3P 2	
2				13	13
3	Blanchett	Cate		9	0
4	Bledel	Alexis		12	1
5	Cabello	Camila		13	1
6	Cooper	Bradley		6	0
7	Depp	Johnny		9	0
8	DiCaprio	Leonardo		12	1
9	Freeman	Morgan		13	1
10	Hanks	Tom		1	0
11	Johansson	Scarlett		13	1
12	Kidman	Nicole		9	0
13	Lawrence	Jennifer		12	1
14	Longoria	Eva		7	0
15	Lopez	Jennifer		13	1
16	Pacino	Al		10	1
17	Penn	Sean		12	1
18	Portman	Natalie		11	1
19	Rodriguez	Gina		13	1
20	Swank	Hilary		9	0
21	Vergara	Sofia		12	1
22					

In the space after Number1, make sure it says E3 in this case, which is the cell which holds Cate's 0 to E21, which is the cell which holds Sofia's 1.

,	A	B	C	D	E
1	DATA, Ol		M1	3P 2	
2				13	13
3	Blanchett	Cate		9	0
4	Bledel	Alexis		12	1
5	Cabello	Camila		13	1
6	Cooper	Bradley		6	0
7	Depp	Johnny		9	0
8	DiCaprio	Leonardo		12	1
9	Freeman	Morgan		13	1
10	Hanks	Tom		1	0
11	Johansson	Scarlett		13	1
12	Kidman	Nicole		9	0
13	Lawrence	Jennifer		12	1
14	Longoria	Eva		7	0
15	Lopez	Jennifer		13	1
16	Pacino	Al		10	1
17	Penn	Sean		12	1
18	Portman	Natalie		11	1
19	Rodriguez	Gina		13	1
20	Swank	Hilary		9	0
21	Vergara	Sofia		12	1
22					12
23					19
24					= E22/E23

To find the percent of students who met the benchmark:
Type in the number of students below the sum. Then in the next cell, E24 in this case, type in =E22/E23
(The equals sign tells Excel that math is required.)

1	A	B	C	D	E
1	DATA, Ol		M1	3P 2	
2				13	13
3	Blanchett	Cate		9	0
4	Bledel	Alexis		12	1
5	Cabello	Camila		13	1
6	Cooper	Bradley		6	0
7	Depp	Johnny		9	0
8	DiCaprio	Leonardo		12	1
9	Freeman	Morgan		13	1
10	Hanks	Tom		1	0
11	Johansson	Scarlett		13	1
12	Kidman	Nicole		9	0
13	Lawrence	Jennifer		12	1
14	Longoria	Eva		7	0
15	Lopez	Jennifer		13	1
16	Pacino	Al		10	1
17	Penn	Sean		12	1
18	Portman	Natalie		11	1
19	Rodriguez	Gina		13	1
20	Swank	Hilary		9	0
21	Vergara	Sofia		12	1
22					12
23					19
24					0.6316

So 63% of my students got a 70% or higher on this question. They did not meet the benchmark for this problem which was 70% of the students.

I actually put all of the grades for an outcome onto one page...

-	A	B	C	D	E	F	G	H	1	J	K	L	M	N	\bigcirc	P	Q	R	S	T	U	v
1	DATA		M1	3 P 2	3Q 1	T1 8	3P 3	3 Q 2	T1 12	M2	1 aO 9	T15	T1 17	M3	2Q 1	2Q 2	T1 11	M4	2P 2	2P 3	2Q 3	T1 20
2				13	13	6	5	10	10		8	15	10		5	8	10		18	10	10	10
3	Blanchett	Cate		9	13	4.5	5	10	10		8	14	10		5	8	10		0.5	6	10	10
4	Bledel	Alexis		12	13	5	5	10	8		7	10	0		5	7	0		2.5	6	0	10
5	Cabello	Camila		13	12	5	4	8	5		8	11.5	5		4	8	5		14	10	5	2
6	Cooper	Bradley		6	12	6	4	8	6		8	9.5	2		4	8	2		13.5	7	2	0
7	Depp	Johnny		9	13	5	5	9	8		8	11	8		5	8	8		15.5	10	8	10
8	DiCaprio	Leonardo		12	13	5.5	3	9	8		8	5	7		3	8	7		14	8	7	9
9	Freeman	Morgan		13	13	4.5	5	10	8		7	4	9		5	7	9		16.5	9	9	9
10	Hanks	Tom		1	12	5.5	0	10	9		8	8	9		0	8	9		13	6	9	9
11	Johansson	Scarlett		13	13	5	2	10	10		8	9	10		2	8	10		15	9	10	10
12	Kidman	Nicole		9	13	6	2	10	10		8	5.5	9		2	8	9		12.5	10	9	8.5
13	Lawrence	Jennifer		12	0	6	5	10	8		8	10.5	9.5		5	8	9.5		14	8	9.5	10
14	Longoria	Eva		7	13	6	5	9	6.5		7	14.5	1		5	7	1		7	5	1	8
15	Lopez	Jennifer		13	12	4.5	5	6	9		6	13	6		5	6	6		10	9.5	6	6
16	Pacino	Al		10	12	4.5	5	8	8		8	13.5	8		5	8	8		17	10	8	9.5
17	Penn	Sean		12	12	5	5	10	10		8	15	0		5		0		18	10	0	10
18	Portman	Natalie		11	13	6	0	9	10		7	1	7.5		0	7	7.5		18	10	7.5	8.5
19	Rodriguez	Gina		13	13	2	3	10	9		8	1	8.5		3		8.5		18	10	8.5	7
20	Swank	Hilary		9	13	6	5	10	7.5		0	1	5		5	0	5		17	9	5	5
21	Vergara	Sofia		12	12	4	4	7	6.5		6	1	8.5		4	6	8.5		9.5	10	8.5	6.5

and the 1 's and 0 's on another page.

\square	A	B	C	D	E	F	G	H	I	J	K	L	M	N	0	P	Q	R	S	T	U	V
1	DATA, O1		M1	3P 2	3Q 1	TI 8	3P 3	3Q 2	TI 12	M2	1 aO 9	T1 5	T1 17	M3	2Q 1	2Q 2	T1 11	M4	2P 2	2P 3	2Q 3	T1 20
2				13	13	6	5	10	10		8	15	10		5	8	10		18	10	10	10
3	Blanchett	Cate		0	1	1	1	1	1		1	1	1		1	1	1		1	1	1	1
4	Bledel	Alexis		1	1	1	1	1	1		1	1	1		0	0	1		1	1	0	1
5	Cabello	Camila		1	1	1	1	1	0		1	1	1		1	1	1		0	0	1	0
6	Cooper	Bradley		0	1	1	1	1	0		1	1	0		1	0	0		0	0	1	0
7	Depp	Johnny		0	1	1	1	1	1		1	1	1		1	1	1		1	0	1	1
8	DiCaprio	Leonardo		1	1	1	0	1	1		1	0	1		1	0	1		0	0	1	1
9	Freeman	Morgan		1	1	1	1	1	1		1	1	1		1	1	0		1	0	1	1
10	Hanks	Tom		0	1	1	0	1	1		1	1	0		1	0	1		1	1	1	1
11	Johansso	Scarlett		1	1	1	0	1	1		1	1	1		1	1	1		1	1	1	1
12	Kidman	Nicole		0	1	1	0	1	1		0	1	1		1	0	1		1	1	1	1
13	Lawrence	Jennifer		1	0	1	1	1	1		1	0	1		1	1	1		0	1	1	1
14	Longoria	Eva		0	1	1	1	1	0		1	0	0		1	1	1		1	0	0	1
15	Lopez	Jennifer		1	1	1	1	0	1		1	1	1		1	0	1		0	0	0	0
16	Pacino	Al		1	1	1	1	1	1		1	1	1		1	1	1		1	1	1	1
17	Penn	Sean		1	1	1	1	0	1		1	1	1		0	1	1		0	0	1	1
18	Portman	Natalie		1	1	1	0	1	1		1	1	1		1	1	1		1	0	1	1
19	Rodriguez	Gina		1	1	0	0	1	1		1	1	1		1	0	0		0	1	1	1
20	Swank	Hilary		0	1	1	1	1	1		0	1	1		1	1	0		0	1	1	0
21	Vergara	Sofia		1	0	0	0	1	1		1	1	0		1	1	1		1	1	0	1
22				12	17	17	12	17	16		17	16	15		17	12	'15		11	10	15	15
23				19	19	19	19	19	19		19	19	19		19	19	19		19	19	19	19
24				0.63	0.89	0.89	0.63	0.89	0.84		0.89	0.84	0.79		0.89	0.63	0.79		0.58	0.53	0.79	0.79
25			M1	3P 2	3Q 1	T1 8	3P 3	3Q 2	T1 12	M2	1 aO 9	T1 5	T1 17	M3	2Q 1	2Q 2	T1 11	M4	2P 2	2P 3	2Q 3	T1 20

Now I can see the results of each problem in each objective to carry them over into TK20.

An example from Test 1 \#8
8. (6 pts) Find the standard deviation of the sample $1,9,6,5,8,1$ by hand - show your work. Round the standard deviation to two decimal places.

$$
\begin{array}{rr}
1-5:-4 & (x-x)^{2} \\
4 & (1-5)^{2} \\
2 & 16 \\
2 & 16 \\
1 & 0 \\
3 & 0 \\
-4 & 16
\end{array}
$$

$$
k_{n} \text { not }
$$

$$
\sqrt{\frac{58}{2}}=\sqrt{14.5}=3.80,581
$$

	12	17	17
19	19	19	
0.63	0.89	0.89	
M1 3 P 2	3Q 1	T 18	

Results: Mean and Standard Deviation: 63% of the students passed this question on the Prep Work, 89% on the Quiz, and 89% on the exam.

In my findings in the RESULT box in TK20, I can discuss my use of Prep Work questions which students do from reading the book before coming to class and how the in-class discussion and quiz work help them understand the material enough to pass the benchmark on the proctored exam.

2. Learn ways to interpret your data using basic statistics

I wanted to compare a question from this year's students to students a year ago to see if my improvements to the textbook and use of prep work helped with a particularly difficult question type. I had the data in Excel so just copied the scores from each year. This is a portion of the scores from an 18-point question.

T2 \#12. Approximately 10% of all people are left-handed. Suppose 80 people from the

Fall18	Fall19
1	17
7.5	12
12.5	17
11	9
4.5	18
13	16
14	12
16	8.5
17.5	17
12	14
1.5	14
17	16
16.5	16
14.5	9.5
17.5	18
16	16
14.5	4
17	16

Two-Proportion z Test:

Last year, 58.46% of the students received at least 12.6 points which is a 70% or better on this question. This year the percent was 80%. Using a twoproportion z test on my TI-84 calculator to test if these proportions are significantly different, $z=-2.6604$ with a p-value of 0.0078 . So there is enough evidence to show that 80% this year is different from 58% last year.

The assumptions which need to be met or at least discussed:

1. Large enough samples - the number of successes and the number of fails for each sample must be greater than 5 .
2. Random samples to reduce bias - the samples should be good representations of
 your populations.

If you don't have a TI-84 calculator to use, you can borrow one from me or another math teacher, or you can get an emulator called Wabbitemu for free at Google Play Store.

Wabbitemu creates a Texas Instruments graphing calculator right on your Android device. Wabbitemu supports the TI-73, TI-81, T।-82, TI-83, TI-83 Plus, TI-83 Plus Silver Edition, TI-84 Plus, TI-84 Plus Silver Edition, TI-85, and T1-86. Fast and convenient, Wabbitemu allows you to always have your trusty calculator with you. Because Wabbitemu is an emulator, the calculator it creates will act exactly like the real thing.

To do the test, click on STAT

Then arrow over to TESTS and click on 6:2-PropZTest

Enter the number of students who passed the question in your first sample into $x 1$, the total number of students in your first sample in $n 1$, the number of students who passed the question in your second sample into $x 2$, and the total number of students in your second sample in $n 2$. Click on $\neq p 2$ to get a two-sided test which is most often used. And then click on Calculate.

Two Independent Samples t Test:

I could go back to the original scores instead of test for a significant change in the grades. I copy and paste the data into SPSS.

Fall18	Fall19
1	17
7.5	12
12.5	17
11	9
4.5	18
13	16
14	12
16	8.5
17.5	17
12	14
1.5	14
17	16
16.5	16
14.5	9.5
17.5	18
16	16
14.5	4
17	16

	Group	N	Mean	Std. Deviation	Std. Error Mean
Scores	1	65	12.44	4.499	.558
	2	65	14.92	3.091	.383

I have handouts which explains how to input the data into SPSS and perform the test if anyone would like them.

Independent Samples Test
Levene's Test for Equality of

Variances t-test for Equality of Means | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | Mean | Std. Error | $\begin{array}{c}95 \% \text { Confidence Interval of the } \\ \text { Difference }\end{array}$ | | |

		F	Sig.	t	df	Sig. (2-tailed)	Difference	Difference	Lower	Upper
Scores	Equal variances assumed	8.776	. 004	-3.674	128	. 000	-2.488	. 677	-3.827	-1.148
	Equal variances not assumed			-3.674	113.412	. 000	-2.488	. 677	-3.829	-1.146

Equal variances not assumed, so $t=-3.674$ with a p-value of 0.000 . The t is negative because SPSS subtracts group one minus group two - so we know that the mean of group one is lower.

A very small p-value shows that we have significance. The level of significance is normally 0.05 and the p -value is smaller than that level.

The assumptions which need to be met or at least discussed:

1. Large enough samples - at least 25 in each sample.
2. Random samples to reduce bias - should be good representations of your populations.
